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Fig. 1. A virtual character going through a running cycle, letting his hair impact repeatedly the back and neck of his shirt. The groom consists of 54, 450

Discrete Elastic Rods, totalling 1.2M degrees of freedom, while the shirt mesh contains about 27, 000 vertices. This scene induces as much as 4.5M contacts,
which are solved implicitly and with nonlinear Coulomb friction thanks to our proposed algorithm. ©Weta Digital.

Frictional contacts are the primaryway bywhich physical bodies interact, yet

they pose many numerical challenges. Previous works have devised robust

methods for handling collisions in elastic bodies, cloth, or fiber assemblies

such as hair, but the performance of many of those algorithms degrades

when applied to objects with different topologies or constitutive models, or

simply cannot scale to high-enough numbers of contacting points.

In this work we propose a unified approach, able to handle a large class

of dynamical objects, that can solve for millions of contacts with unbiased

Coulomb frictionwhile keeping computation time andmemory usage reason-

able. Our method allows seamless coupling between the various simulated

components that comprise virtual characters and their environment. Fur-

thermore, our proposed approach is simple to implement and can be easily

integrated in popular time integrators such as Projected Newton or ADMM.
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1 INTRODUCTION
The continuously increasing demand for visual richness of virtual

environments has prompted the use of physical simulation to gen-

erate an ever larger portion of the final rendered frames. While the

dynamics of the various objects that compose virtual environments

can in themselves be of great interest, a large part of the visual

complexity of their shape and motion can be attributed to the in-

teractions that they have with surrounding components. In many

cases, these interactions take the form of contact with dry friction;
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consider examples as diverse as a granular material, the leaves of a

tree gently colliding under a breeze, or hair strands subtly entangled

with neighbouring fibers, themselves lying upon layers of cloth and

eventually skin.

Yet, simulation of dry friction has always proved numerically chal-

lenging, and robust approaches capable of efficiently handling these

various object topologies and interactions in a unified manner are

still scarce. Many previous works have focused on either methods

capable of treating collisions between a very high number of “sim-

ple” components, such as granular materials, rigid bodies, or fiber

assemblies, or at the other end of the spectrum a more reasonable

number of large deformable bodies, such as flesh or cloth. Another

dichotomy has also often been made between volumetric and thin

objects, as slight amounts of inter-penetration can be tolerated for

the former, but would immediately lead to hard-to-recover-from

artefacts for the latter.

In this work, we propose a novel, simple yet scalable approach for

the numerical simulation of hard contacts with nonlinear Coulomb

friction for a large class of dynamical objects. Our method is espe-

cially compelling for assemblies of thin objects where the ratio of

degrees of freedom to contact points is unfavorable, as illustrated

in Fig. 1 where the garments of a character and the tens of thou-

sands of fibers that comprise their hairstyle are simulated together,

amounting to millions of degrees of freedom and contact points.

2 RELATED WORK
Due to the ubiquity of frictional contacts in physical and virtual

environments, treatment of collisions in numerical simulations has

been the subject of a vast amount of literature over the last decades.

2.1 Penalty forces
Inspired by molecular dynamics, the first methods developed in me-

chanics [Cundall and Strack 1979] and Computer Graphics [Moore

and Wilhelms 1988] suggested to resolve contacts through the appli-

cation of penalties, repulsive forces of intensity proportional to the

inter-penetration depth of the colliding bodies. While Baraff and

Witkin [1998] proposed an implicit integration scheme for elastic

and collision energies that alleviated the drastic timestep restrictions
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imposed by the explicit application stiff penalties, their approach

suffered from excessive numerical dissipation and sticking artefacts;

recently Michels et al. [2017] fixed this issue by using a stiffly accu-

rate integrator. Traditionally, the frictional component of penalty

forces is defined as proportional to the sliding velocity; this does not

allowmodeling dry friction, where non-zero friction can exist at rest.

Yamane and Nakamura [2006] propose to sidetrack this limitation

through the use of frictional anchors that are continuously updated

as to locally satisfy Coulomb law.

Even with implicit treatment, finite penalties cannot prevent

tunnelling for arbitrary colliding momenta. This is especially prob-

lematic for thin objects like cloth. To this end, the popular method

of Bridson et al. [2002] augments penalties with an end-of-step geo-

metric correction scheme that iteratively moves vertices to resolve

collisions, and falls back to the rigid-impact-zone failsafe of Provot

[1997] if it cannot find valid positions. Harmon et al. [2008] relaxed

this failsafe to allow sliding at impact zones, but still fails to accu-

rately model dry friction. These corrective steps also ignore internal

elasticity of the dynamic objects, potentially leading to large stresses

after resolution.

2.2 Hard contacts
In parallel, a vast amount of literature has been dedicated to implicit

constraint-based contacts and the proper treatment of dry friction.

Jean and Moreau [1988] first proposed the use of impulses to re-

solve impacts in a timestepping integrator. In Computer Graphics,

Baraff [1989; 1994] popularized the use of inequality constraints and

linear complementarity to model unilateral contacts. Kaufman et al.

[2008] demonstrated that efficient quadratic program solvers can be

leveraged to solve the normal and tangential force components in a

staggered fashion.

Second-order methods. Alart and Curnier [1991] proposed a first

approach to solve 3D contact dynamics with Coulomb friction by

applying the Newton method to find the roots of a nonsmooth com-
plementarity function. In Computer Graphics, Bertails-Descoubes

et al. [2011] applied this algorithm to the simulation of fiber assem-

blies, but noted that convergence was hard to achieve for high ratios

of contacts to degrees of freedom (DoF). Another suitable, slightly

smoother complementarity function was devised by Fukushima et al.

[2002]. Recently, Macklin et al. [2019] proposed a novel Newton

algorithm that constructs successive local quadratizations of com-

plementarity functions, yielding a series of linear systems that can

be efficiently solved through the Conjugate Residual method and

demonstrating much more robust convergence. Newton algorithms

have also been employed inside Interior Point solvers [Acary et al.

2011; Heyn 2013] to solve a convexified version of the Coulomb

law, the so-called associated friction law. Acary et al. [2011] also

proposed a fixed-point algorithm reducing exact Coulomb friction

to several instances of the associated law.

While the theoretical quadratic rate of convergence of Newton

and Interior Points methods is attractive for medium-scale contact

dynamics problems requiring high accuracy, the fact that they re-

quire solving a new linear system at each iteration, as well as the

difficulty to warmstart interior point solvers, have contributed to

the greater popularity of first-order methods for large scale visual

applications.

Operator-splitting methods. The idea of sequentially solving con-

tacts one-by-one until convergence is achieved for the whole system

has first been proposed by Jean andMoreau [1992], then popularized

as the Non-Smooth Contact Dynamics method [Jourdan et al. 1998;

Jean 1999]. They observed that applying the Newton algorithm of

Alart and Curnier [1991] to single contacts multiple times is both

more robust and more efficient than applying the method to all

contacts at once. Duriez et al. [2004]; Catto [2005]; Erleben [2007]

popularized such Gauss–Seidel-like algorithms in Computer Graph-

ics, but treated only the frictionless case or linearized friction laws.

Bonnefon and Daviet [2011] proposed an analytical enumerative

solver for the one-contact problem with exact Coulomb friction.

Daviet et al. [2011] combined this analytical solver with the com-

plementarity function from Fukushima et al. [2002] to solve the

dynamics of a few thousands Super-Helices [Bertails et al. 2006].

Kaufman et al. [2014] embedded their algorithm inside a non-linear

elasticity solver and were able to robustly simulate frictional con-

tacts in assemblies of up to 64k Discrete Elastic Rods [Bergou et al.

2008, 2010]. Recently Erleben [2017] described a general framework

for building operator-splitting algorithms.

Operator-splitting algorithms have demonstrated satisfying scal-

ing behaviour for dynamical systems consisting in many small ob-

jects, like hair fibers or rigid bodies. However, they require either ex-

plicitly assembling [e.g, Jean 1999] or back-solving many times [e.g,
Erleben 2007] the so-called Delassus operator, making them unsuit-

able for the simulation of larger elastic bodies, like cloth or muscles.

For such fully-connected bodies the Delassus operator is indeed

generally dense, with a number of rows and columns corresponding

to the total number of contacts; this leads to intractable memory

and/or computational costs. Otaduy et al. [2009] solved this issue by

adding another level of operator-splitting, propagating the elastic

strains in a second loop on top of the contact solver. Li et al. [2018]

proposed to altogether avoid the use of the Delassus operator by

expressing the constrained dynamics on the primal velocity vari-

able rather than the dual forces. However, this transformation is

only made possible by placing stringent assumptions on the contact

configuration.

First-order descentmethods. While robust, operator-splitting solvers

suffer from poor (logarithmic) theoretical convergence, and asymp-

totically faster solvers based on variants the Projected Gradient

algorithm have also been developed [Tasora 2013; Mazhar et al.

2015]. Derived from convex optimization theory, these methods

target the associated version of the Coulomb law. One major ad-

vantage is that they require only solving by the Delassus operator

once per iteration, and thus remain tractable for large elastic bodies.

Moreover, the constraint projection step is embarrassingly paral-

lel. However, the projection being performed on the force variable

means that feasibility of the velocity iterate will not be enforced until

full convergence of the algorithm. In contrast, primal-dual descent

methods, such as the Alternating Directions Method of Multipliers
(ADMM) deriving from Augmented Lagrangian formalism [Fortin

and Glowinski 1983], can perform the projection on the primal ve-

locity variable, ensuring its feasibility. Such methods have recently
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become popular in Computer Graphics [Narain et al. 2016; Inglis

et al. 2017; Fang et al. 2019], though their application to contact

dynamics remains limited to single vertices [Narain et al. 2016] or

suffers from hard-to-tune convergence parameters [Daviet 2016]. Fi-

nally, we mention that Krylov-subspace descent methods have also

been formulated [Renouf and Alart 2005; Verschoor and Jalba 2019].

While such methods are theoretically limited to linear constraints,

Verschoor and Jalba [2019] emulate the true quadratic friction cone

by progressively aligning the friction direction with the relative

velocity.

2.3 Position-based dynamics
Position-based dynamics (PBD) [Müller et al. 2007] were developed

as an attempt to plausibly approximate physics-based animations

with robust handling of frictional contacts for real-time applications.

Their relative simplicity, stability, and availability in off-the-shelf

commercial packages have since then made PBD immensely popular

for offline simulations as well. While the behaviour of the original

method was highly dependent on non-physical parameters such as

number of iterations, Macklin et al. [2016] later introduced X-PBD,

a modification that ensures convergence to a proper dynamical

equilibrium. However, since constraints are solved in a Gauss-Seidel

fashion, strains are only propagated to the neighbouring particles at

each iteration. For long chains of particles, achieving convergence

would thus require an unacceptably long time. Moreover, as we

show in Section 5.2.4, the contact solving approach of PBD and

X-PBD may introduce artificial energy into the system.

2.4 Continuum approaches
Tangential to the present article, an alternative line of work proposes

to apply continuum methods to the treatment of contact dynam-

ics between elastic bodies — which is especially justified when

the typical size of the objects heterogeneities is small compared to

the simulation resolution. Hadap and Magnenat-Thalmann [2001]

first applied this idea to the simulation of hair dynamics, and more

recently Jiang et al. [2017] adapted the granular Drucker–Prager

rheology to the simulation of thin 1D and 2D objects. While the

background grid used in continuum approaches supplants proxim-

ity detection and prevents intersections “for free”, precise collision

resolution requires a fine grid and thus tight timestep restrictions.

To alleviate this issue, hybrid methods augmenting coarse contin-

uum simulations with discrete collision resolution have also been

proposed [McAdams et al. 2009; Yue et al. 2018; Han et al. 2019;

Fei et al. 2019]. The natural collision resolution granted by the

background velocity field also tends to average-out high-frequency

velocity gradients, hindering subtle changes in local topology.

3 OVERVIEW
Let us first restate our objectives. We would like a frictional contact

solver able to handle at the same time a large amount of small objects

like hair strands, and large elastic objects like cloth or muscles,

with as few as possible restrictions on the choice of discretization

and constitutive models. Furthermore, as we are dealing with thin,

two-sided objects, we cannot tolerate tunnelling and must thus

enforce strict feasibility of the objects velocities. We also need our

Fig. 2. A long elastic rod is looped around several cylinders and attached to
a heavy elastic body (left), which is then released under gravity. Equipped
with a high friction coefficient (µ = 0.5), the device is self-locking (middle),
while a low friction coefficient (µ = 0.2) will lead to the rod unravelling
completely (right). This experiment illustrates the common scenario of a
single contact layer, but far-range stretch propagation.

method to be highly scalable, up to millions of contact points, and

to perform robustly even in the unfavorable DoF -starved regime

identified by Bertails-Descoubes et al. [2011]. Conversely, as we

target mainly visual applications moderate accuracy of the contact

forces is acceptable, keeping first-order methods relevant. That

being said, we still need our solver to be precise enough for our

simulation to remain stable, and properly capture the characteristic

behaviour of Coulomb friction. Finally, we want the visual result

to depend as little as possible on non-physical parameters such as

iteration numbers.

None of the methods presented above satisfy all those criteria,

but we will take inspiration from a number of them. Like Otaduy

et al. [2009]; Gornowicz and Borac [2015], we will decompose our

problem into an elastic relaxation part and a contact projection part,

and alternate between solving the two. Similarly to those works, the

feasibility constraint will be enforced with a Gauss–Seidel algorithm,

but will leverage an analytical local solver on the primal velocity

variable, yielding an implementation very similar to PBD [Müller

et al. 2007] but with fixed mathematical properties. In contrast to

Gornowicz and Borac [2015], we won’t compute the actual local con-

tact forces — only the resulting forces at DoF . Moreover, our contact

projection scheme takes into account elastic stiffness, and ensures

that nonlinear Coulomb friction is satisfied for arbitrary contact

points, while Otaduy et al. [2009] uses a faceted approximation and

the friction update proposed by Gornowicz and Borac [2015] is only

exact for contacts at vertices. For the elastic relaxation step, we

will solve penalized linear systems using the Conjugate Gradient

method ensuring fast, global propagation of the strain updates. The

left-hand-side of these linear systems will remain constant across

iterations, permitting the use of an efficient preconditioner. The intu-

ition behind using Gauss–Seidel for contacts but a global linear solve

for elastic relaxation is that in our simulations the length of fully-

connected DoF chains is typically much greater than the number

of densely-packed contacting layers; see e.g, Fig. 2. The decomposi-

tion of our problem into elastic relaxation and contact projection

parts will be achieved through the ADMM formalism [Fortin and

Glowinski 1983].
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3.1 Contributions
Our contributions are as follow:

• the derivation of an iterative algorithm based on the ADMM

framework for splitting the frictional contact dynamics
problem into two sub-problems that are much easier to

solve individually. This algorithm is non-intrusive, can handle

a large class of deformable objects, and can be plugged into

standard nonlinear integrators such as Projected Newton;

• amatrix-free Gauss–Seidel solver for enforcing hard con-
tact constraints with nonlinear Coulomb friction at the veloc-

ity level that is both highly scalable and simple to implement;

• various optional extensions for these algorithms, for instance

for handling cohesion and contact compliance.

3.2 Outline
Section 4 will present the dynamical simulation context in which

we inscribe our contributions, introduce notations, and recall the

definition of the Signorini–Coulomb contact law. Section 5 walks

through the mathematical derivation of our main contributions and

the insights underpinning them. This section assumes some basic

knowledge of convex optimization theory, but is not mandatory for

practical implementation purposes. We invite the impatient reader

to jump ahead the next one. Section 6 summarizes our complete

algorithm, and provides a detailed implementation guide. Section 7

validates our algorithm on model examples as well as showcases

some large-scale coupled simulations that our method enables. Fi-

nally Section 8 discusses benefits and limitations of our approach

and potential future work.

4 SIMULATION CONTEXT

4.1 Discretization
Space discretization. Let q in Rm denote the concatenated vector

of all degrees of freedom of our dynamic objects, and v := Ûq their

time derivative. We now make an assumption on the discretization

that will allow for an efficient treatment of collisions.

Assumption 1. For any point belonging to a dynamic object, we
assume that its position x(t) ∈ R3 can be expressed as a linear combi-
nation of 3D degrees of freedom,

x(t) =
∑
j
bj (x)qj (t) + x(t),

with bj (x) ∈ R, qj (t) ∈ R
3, and x(t) ∈ R3 an optional kinematic

term.

In other terms, objects may have non “position-like” degrees of

freedom as long as such DoF do not take part in the computation of

the position of potential colliding points.

The class of objects that satisfy Assumption 1 includes nodal

systems — whose degrees of freedom are vertices of a mesh; many

FEM basis functions; higher-order interpolation schemes such as

GMLS [Martin et al. 2010] or frame-based models [Faure et al.

2011]; and even partially-reduced models such as Discrete Elastic

Rods [Bergou et al. 2008, 2010], as long as we assume an infinitely

thin centerline. Notable exclusions are rigid-bodies (rotation DoF

are not allowed in our framework) and most reduced-coordinates

models such as Super-Helices [Bertails et al. 2006].

Time discretization. Throughout this paper we will consider a

finite timestep [t, t + ∆t ]. Begin-of-step quantities will use the su-

perscript ·t (e.g, qti ). Since we focus on implicit integration, we do

not superscript end-of-step values for concise notation. For instance,

we will integrate velocities over the timestep as q = qt + ∆tv .

4.2 Contacts

(A)

(B)

n

•

xA = xB

Let us consider a contact between point

xc ,A of body (A) and point xc ,B of body

(B). We will note nc the contact normal

pointing from (B) to (A), rc the contact
force applied by object (B) onto object

(A), andhc the position gap,hc := xc ,A−
xc ,B . For any 3D vector z defined at the

contact point, we will also denote by z
N

and z
T
its normal and tangential parts, i.e, z

N
:= z · nc and z

T
:=

z−z
N
nc . While the normal should itself be an implicit function of the

DoF [Tang et al. 2012], in the following we will considered nc to be

constant over the timestep and rely on multiple collision detection

passes to ensure that the end-of-step state is indeed collision-free.

Kinematics. Given Assumption 1, the gap function hc can be

expressed as a linear combination of 3D DoF as

hc (t) =
∑
j ∈Jc

bc , jqj (t) + hc (t),

where Jc is the subset of node indices from objects (A) and (B)
for which bc , j , 0 and hc encompasses kinematic components,

including for instance the motion of scripted colliders.

For brevity of notation and when there are no ambiguities, in

the remainder of this document we will drop the c subscript when
referring to quantities defined at any given contact. We will also

use upright letters to refer to the concatenated vector of values

at all contact points, e.g, u = (uc )c≥0. In particular, gathering all

bc , j coefficients in the sparse matrix B, we will write the linear

relationship between h and q as h = Bq + h.

Discrete-time relative velocity. As classically done in contact me-

chanics [e.g, Stewart and Trinkle 1996]), we express the end-of-

timestep non-penetration condition h
N
≥ 0 using a first-order Tay-

lor approximation, h
N
∼ ht

N
+ ∆t ÛhN

≥ 0. For notational convenience

and without loss of generality, we include this normal offset in the

definition of our discrete-time relative velocity,

u := Ûh +
1

∆t
ht
N
n.

This definition allows expressing the velocity-level non-penetration

condition compactly as u
N
≥ 0. Note that the tangential part u

T
still

coincides with the “physical” relative velocity. Finally, we include

this normal offset in an all-encompassing kinematic term k :=
Ûh + 1

∆t
ht
N
n, so that our relative velocity u can be expressed as

u =
∑
j ∈J

bc , jv j + k,

or more compactly in matrix form as u = Bv + k.
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n
Kµ

•

r = 0

u

n

r

•

u = 0

n

r

u

Fig. 3. Take-off (left), sticking (center) and sliding (right) cases of the
Signorini–Coulomb conditions.

4.3 Signorini-Coulomb conditions
The Signorini condition expresses that not only interpenetration

must be prevented, i.e, u
N
≥ 0, but that the contact force needs

also be positive and non-zero only if the two points are actually

in contact, i.e, when u
N
= 0. All those conditions can be written

concisely using complementarity notation as

0 ≤ u
N
⊥ r

N
≥ 0. (1)

Coulomb friction dictates that the friction force r
T
must obey the

maximum dissipation principle while being bounded by the friction

coefficient µ times the normal contact force r
N
. Formally,

r ∈ Kµ

r
T
= −µr

N

u
T

∥u
T
∥

if u
T
, 0,

(2)

where Kµ :=
{
∥r

T
∥ ≤ µr

N
, r ∈ R3

}
denotes the second-order cone

of aperture µ. The possible solutions of the Signorini-Coulomb con-

ditions (1-2) are summarized in Fig. 3; in the following, we will

denote the set such of velocity–force pairs (u, r ) by Cµ .

4.4 Implicit integration
The unconstrained conservation of momentum written at the end

of our timestep reads

M
v − vt

∆t
= −
∂

∂q
E(q, v, t + ∆t ) −

1

∆t

∂

∂v
E(q, v, t + ∆t ),

whereM is the mass matrix and E combines elastic and dissipation

potentials. Given our Lagrangian advection scheme q = qt + ∆tv,
we can eliminate q from the above equation and rewrite it simply as

∂

∂v
A(v) = 0, (3)

with the total energyA(v) := E(q(v), v, t+∆t )+ 1

2
(v−vt )TM(v−vt ).

Various implicit time integrators have been employed in Computer

Graphics to solve the unconstrained optimization problem (3); in

the following we will make use of Projected Newton [Teran et al.

2005] and ADMM [Narain et al. 2016].

Constrained dynamics. Following Jean and Moreau [1988], we

integrate contact forces over the timestep and plug them into Eq. 3

through Lagrange multipliers, yielding our incremental problem
∂

∂v
A(v) = BT r

u = Bv + k

(u, r) ∈ Cµ ∀1 ≤ c ≤ n.

(4)

n
Kµ

K 1

µ r

u

ũ

Fig. 4. Feasible velocity vectors u and ũ for the non-associated (a.k.a.
Coulomb; magenta) and associated (orange) flow rules. The associated
law Kµ ∋ r ⊥ ũ ∈ K 1

µ
requires the velocity ũ to be orthogonal to the force

r , which is not the case for the Coulomb law.

Iterative quasi-Newton methods such as Projected Newton can be

easily adapted to solve the constrained incremental problem (4),

as exemplified by Jean [1999]. At each iteration k , one constructs

a symmetric operator Ak approximating the Hessian of A at vk ,
and proceeds to compute the next iterate vk+1

as the solution of a

Discrete Coulomb Friction Problem (DFCP ),
Akvk+1 = fk + BT r, fk := Akvk −

∂

∂v
A(vk )

u = Bvk+1 + k

(u, r) ∈ Cµ ∀1 ≤ c ≤ n.

(5)

Note that Problem (5) is itself a special case of Problem (4) whereA

happens to be quadratic. Several methods have in turn be proposed

to solve this DFCP , however their efficiency will be largely deter-

mined by the structure of the matrix Ak . For general elastic bodies,

Ak will have a dense inverse, which renders methods requiring

explicit assembly or many multiplications by the Schur complement

BAk
−1

BT intractable.

In the next section we will show how we can apply the ADMM

optimization scheme to solve efficiently the incremental problem (4)

or its linearized variant (5). Our goal is to give an intuition about

the method, but we invite any reader purely interested in the imple-

mentation details to jump ahead to Section 6.

5 MATHEMATICAL DERIVATION

5.1 Alternating Direction Method of Multipliers
Proxy convex friction law. To leverage the convex optimization

formalism, we would need our friction law to derive from a con-

vex potential. Coulomb friction does not satisfy this condition, but

exhibits strong similarities with the associated friction law (Fig. 4),

which itself is convex; the two laws even coincide in the sticking and

frictionless cases. We will thus temporarily use the associated fric-

tion law as a convex proxy to guide our derivations before switching

back to the actual Signorini-Coulomb conditions. This process will

not preserve the convergence guarantees granted by convex opti-

mization theory, but we may expect the practical behaviour to be

similar enough. Replacing the Signorini–Coulomb conditions with

the associated law in the incremental problem (4), we recognize the

optimality conditions of the convex minimization problem

min

v∈Rm , Bv+k∈K 1

µ

A(v); (6)

see Appendix A for more details.
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ADMM. Let us now introduce an auxiliary variable p ∈ Rm that

we will constrain to be equal to v, and recall the definition of the

characteristic function C associated to the conical constraint,

C : Rm → R, p 7→

{
0 if Bp + k ∈ K 1

µ

+∞ otherwise.

We can split our optimization problem (6) as

min

p=v, (v,p)∈R2m
A(v) + C(p),

and write it under Augmented Lagrangian form
1
,

max

˜λ∈Rm
min

(v,p)∈R2m
L

(
v, p, ˜λ

)
,

L

(
v, p, ˜λ

)
:= A(v) + C(p) + ˜λ

T√
W (p − v) +

1

2

∥
√
W (p − v)∥2.

HereW is a diagonal matrix assigning a weightw j > 0 to each 3D

DoF constraint p j = v j . Note that this does not mean using a soft

constraint – the constraint weights are affecting the convergence of

the algorithm, but not its final result, where strict equality should

hold. We will come back on how to choose these weights in practice

in Section 6.2.6.

The ADMM algorithm then proceeds to iteratively optimize over

each variable of the Augmented Lagrangian, assuming the other

two fixed; at iteration l ,

(i) vl+1 ← arg minv∈Rm L(v, p
l , ˜λ

l
);

(ii) pl+1 ← arg minp∈Rm L(v
l+1, p, ˜λ

l
);

(iii)
˜λ
l+1

← ˜λ
l
+
√
W (pl+1 − vl+1).

As suggested by Narain et al. [2016], to simplify notations we in-

troduce the change of variable λ :=
√
W
−1

˜λ. Our ADMM iteration

becomes:

(i) vl+1 ← arg minv∈Rm A(v) +
1

2
∥
√
W

[
v − (pl + λl )

]
∥2;

(ii) pl+1 ← arg minp∈Rm C(p) +
1

2
∥
√
W

[
p − (vl+1 − λl )

]
∥2;

(iii) λl+1 ← λl + pl+1 − vl+1
.

Step (iii) is trivial, and Steps (i) and (ii) can be recognized as evaluat-

ing proximal operators forA and C under theW -norm. In particular,

if A is quadratic, i.e, A(v) := 1

2
vTAv + fv, then Step (i) reduces

to a linear solve, (A +W )vl+1 = f +W
[
pl + λl

]
. Note that the

A +W matrix is constant, so it can be prefactored at the beginning

of the algorithm. Finally, Step (ii) amounts to projecting the point

vl+1 − λl onto the set {p ∈ R3n, Bp + k ∈ Kµ } orthogonally under

theW -norm.

Back to Coulomb law. The orthogonal projection in Step (ii) can

be recognized as having the same structure as Problem (6). We

can thus perform the reverse transform of going from Problem (4)

to Problem (6), switching back from the proxy convex law to our

1
Augmented Lagrangian formulations also typically feature a positive multiplier γ for

the quadratic penalization term. However, we have found γ , 1 to not perform well in

practice, so have chosen to omit it from the formulation.

original Coulomb friction law. We obtain another DFCP ,
W p =W

[
vl+1 − λl

]
+ BT r

u = Bp + k

(u, r) ∈ Cµ .

(7)

We can easily check that any fixed-point of our ADMM algorithm

where Step (ii) is achieved by solving the DFCP (7) is indeed a

solution to our initial incremental problem (4). That is, even though

we used an alternative friction law to derive our algorithm, we

do end up solving the right problem. Indeed, given Step (iii) any

fixed point must satisfy p = v, where v is also a solution of Step (i),

meaningW λ = ∇A. Plugging these two equalities into the first line

of Problem (7) we recognize the incremental problem (4).

5.2 Global projection
One may legitimately wonder whether we gained much by going

through this process, as we got from having to solve a series of

DFCP (5) to having to solve another series of DFCP (7). However,

notice that the stiffness matrix of Problem (7),W , is diagonal by

construction, which will enable us to solve the problem much more

efficiently. In essence, we have split our problem into a series of

elastic relaxation problems — Step (i) — and pure frictional contact

projections — Step (ii).

Since the Delassus operator of the DFCP (7) is now easy to assem-

ble, we could solve Step (ii) using any dual-based algorithm such as

the solver from Daviet et al. [2011]. However, the restriction that

we placed on our degrees of freedom, Assumption 1, allows for a

much more efficient local solver, which we detail below.

5.2.1 Isotropic local problem. As classically done in dual-based

methods, we can formally eliminate p from Problem (7) by introduc-

ing the Delassus operator (a.k.a Schur complement) S := BTW −1B.
The local problem that must be solved for each contact within the

Gauss-Seidel loop is {
ukc = Sccr

k
c +u

∗

(ukc , r
k
c ) ∈ Cµ ,

(8)

where u∗ is the locally constant part of the relative velocity,

u∗ :=
∑
c,d

Scdr
k−1

d + kc ,

and the 3 × 3 blocks Scd are computed as Scd = Bc⋆W
−1BTd⋆, with

Bc⋆ denoting the 3 rows of B corresponding to contact c . Now recall

from Section 4.2 that the B matrix consists only of scaled 3 × 3

identity blocks, Bc j = bc , j I3, and thatW is diagonal, consisting

again only of 3 × 3 identity blocks,Wj j = w j I3. This means that

the diagonal blocks of the Delassus operator follow Scc = sc I3 with

sc =
∑
j ∈Jc

1

w jb
2

c , j . In other terms, our local problem is isotropic.
We can also see that the constraint weights wc being strictly

positive, sc is strictly positive as well. We can thus express rkc from

ukc as rkc =
1

sc (u
k
c − u

∗
c ). Since the Signorini-Coulomb conditions

are insensitive to a strictly positive scaling on the force, our local

problem boils down to (
ukc ,u

k
c −u

∗
c

)
∈ Cµ . (9)
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5.2.2 Enumerative solver. Following Bonnefon and Daviet [2011],

we can look for a solution uk in each possible case of the Coulomb

law. However, compared to [Bonnefon andDaviet 2011], the isotropy

of our local problem makes this process a lot simpler.

(i) If u∗
N
≥ 0, then the contact is naturally separating, and uk =

u∗ is a zero-force solution of Eq (9).

(ii) If u∗ ∈ −Kµ , then uk = 0 is a sticking solution of Eq (9).

(iii) Otherwise, ∥u∗
T
∥ > 0, and we can directly construct a sliding

solution by zeroing-out the normal relative displacement and

projecting the tangential force onto the cone boundary, i.e,
uk

N
= 0 and uk

T
= u∗

T
+ µu∗

N

1

∥u∗
T
∥
u∗

T
.

See Appendix B formore thorough justification. Note that in contrast

to [Bonnefon and Daviet 2011], existence of solution to the local

problem is guaranteed; this follows from Scc being full-rank.

5.2.3 Matrix-free algorithm. Explicitly assembling the Delassus

operator S would be quite memory-consuming, and would make

adding new contacts during the solve expensive, forbidding regu-

larly checking for new continuous-time collisions.

Instead, we choose to follow Erleben [2007] and incorporate our

local solver into a matrix-free Gauss-Seidel algorithm. Compared

to the classical variant, we continuously update the p vector using

the newly updated force after solving each contact as p ← p +
W −1BTc⋆(r

k − rk−1). We can thus compute u∗c directly from the

displacement vector by subtracting the previously applied contact

contribution, i.e,u∗c = uc −Bc⋆W
−1BTc⋆r

k−1

c = Bc⋆p+k−Sccrk−1

c .

Our matrix-free Gauss-Seidel scheme is summarized in Algorithm 1.

ALGORITHM 1: Matrix-free Gauss-Seidel projection

for k ≥ 1 do // Gauss-Seidel iterations
for c ≥ 1 do each contact

// Compute current relative velocity

uk−1

c ←
∑
j∈Jc bc , jp j + k c ;

// Subtract previously applied force

u∗c ← uk−1

c − scr k−1

c ;

Compute ukc from u∗c by enumerating cases (Section 5.2.2);

r kc ← r k−1

c + 1

sc

(
ukc − u

k−1

c

)
; // Update force

// Report DoF velocity update

for j ∈ Jc do
p j ← p j +

bc , j
wj

(
r kc − r

k−1

c

)
;

end
end

end

5.2.4 Similarities with other algorithms. Algorithm 1 is actually

very similar to the usual PBD contact displacement update. The

main difference is that we are solving the Signorini-Coulomb condi-

tions with u∗c , while PBD would be using uk−1

c directly. Tracking

and subtracting the previously applied force is actually necessary

for properly enforcing the complementarity of the contact force and

relative velocity variables, which PBD may violate when two con-

tacts are “pushing” in slightly offset directions, as illustrated in Fig. 5.

On the other hand, adapting an existing PBD contact solver to use

•p0

p1

p2 = p3 = . . .

n1 n2

•p0

p1

p2

p2,∗

p3

p3,∗

p4

p4,∗ p5,∗

p6

n1 n2

Fig. 5. Comparison of frictionless PBD contact resolution (left) with our
scheme (right), for two contacts with normals n1 and n2 involving a single
degree of freedom, u1 := u2 := p . Starting from p0, the PBD iterations
stop as soon as the two contacts are not penetrating with both pk .n1 > 0

and (pk − p0).n1 > 0, thus violating the orthogonality of the Signorini
condition and inducing strictly positive work. In contrast, our projection
scheme, which first subtracts the force previously applied by each contact,
correctly converges to the orthogonal projection of p0 onto the feasible set.

our algorithm is straightforward, and the two additional operations

(tracking and subtracting rc ) are both cheap.

Up to a change of variable we can also remark the Algorithm 1

is performing similar iterations to the PROX solver of Erleben

[2017] when using their “blocked” r -Factor strategy. However, the
isotropy of our Scc blocks is ensuring exact enforcement of the local

Signorini–Coulomb conditions after each contact solve, and our

updates involve only scalar multipliers rather than 3 × 3 matrices.

This grants efficiency to our more specialized approach.

We now have all the pieces to write our contact solver; we sum-

marize our implementation in the next section.

6 PRACTICAL IMPLEMENTATION

6.1 Algorithm outline
Algorithm 2 outlines our contact solver applied to a linearized dy-

namics equationAv = f , corresponding for instance to one step of a

Projected Newton integrator. The contact projection step described

throughout Section 5.2 is summarized in Algorithm 3. Note that

we applied a few transformations to Algorithm 1 for performance

reasons, like precomputing the scaling coefficients of the DoF up-

date and storing a scaled version of the contact force, r̄c := scrc ,
to avoid superfluous divisions. As the DFCP that must be solved

at subsequent ADMM iterations are usually quite similar, it is im-

portant to be able to warmstart the projection process; Algorithm 3

shows how this is done in our approach. This allows us to truncate

the number of Gauss-Seidel iterations that are run at each ADMM

iteration heavily.

Use with an ADMM implicit time integrator. While Algorithm 2

focuses on commonly used Projected-Newton-like integrators, it

is not surprising that our ADMM based contact solver can just as

easily be included in an ADMM integrator:

• Just like any other constraint, the weights matrixW must be

added to the left-hand-side of the global step linear system,

and the forceW (p + λ) to the right-hand-side.

• The “local” step of our contact constraint consists in running

the projection algorithm 3.
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ALGORITHM 2: Contact solver for linearized dynamics

Input: Dynamics linearized as Av = f
Input: Tolerance ϵ∞
Input: Maximum numbers of ADMM and Gauss-Seidel iterations

Warm start velocity v0
and forces λ0

(Section 6.2.1);

Do proximity and continuous-time collision detection (Section 6.2.3);

Compute diagonal approximationW of A (Section 6.2.6);

Compute linear solver preconditioner P(A +W ) (Section 6.2.5) ;

Set p ← v0
;

for l ≥ 1 do // Do ADMM iterations
// Update DoF velocities

Solve (A +W )vl = f +W (p + λ) with preconditioner P;

Periodically update continuous-time collision detection ;

// Update feasible projection

p← vl − λ ;

Project p onto feasible set using Algorithm 3 ;

// Check exit criterion (Section 6.2.4)

δ∞ ← ∆t
(
∥vl − vl−1 ∥∞ + ∥vl − p∥∞

)
;

if δ∞ < ϵ∞ or max iterations reached then break;
// Update dual forces

λ← λ + (p − vl )
end

Note that this strategy is similar to the one proposed by Narain et al.

[2016], but extends to self-collisions and frictional contacts.

6.2 Implementation details
6.2.1 Warmstarting velocities. ConsistentlywithOtaduy et al. [2009],
we found that warmstarting our solver with the unconstrained ve-

locity is giving the best results: intuitively, the final solution is often

close to the projection of the unconstrained velocity onto the feasi-

ble set, which is precisely what is computed at the first iteration of

Algorithm 2 when starting from the unconstrained velocity. Note

that in the case of a non-linear solver such as Projected Newton, this

warmstarting strategy is only helpful for the first iteration; for all

subsequent iterations, we use directly the last iterate of our contact

solver, avoiding the cost of computing the unconstrained velocity.

6.2.2 Warmstarting forces. As the dual force vector λ is defined on

the DoF rather than contact points, it is very easy to track across

timesteps. Thus we always start our solver with λ from the previous

timestep or non-linear iteration.

6.2.3 Collision detection. Our collision detection use both prox-

imity and continuous-time edge-edge and point-triangle queries,

accelerated by bounding volume hierarchies [Provot 1997]. Over the

course of ADMM iterations, forces applied to DoF may introduce

new collisions, so we need to check periodically for new continuous-

time collisions — in practice we do so every 5 iterations. Newly

detected collisions are then appended to the list of existing ones.

6.2.4 Stopping criterion. Thanks to the solver working directly on

primal quantities (velocities or displacements), the error metric δ∞
defined in Algorithm 2 has a direct geometric meaning, combining

the displacement between successive iterates and the offset from

the feasible set; in all our large-scale examples we set the tolerance

ALGORITHM 3: Projection onto feasible set

// (Only when initializing contacts)

// Precompute scaling coefficients

for c ≥ 1 do // loop over new contacts
sc ←

∑
j∈Jc

1

wj
b2

j ,c ;

for j ∈ Jc do
γc , j ←

bc , j
scwj

;

end
end
// Warm-start DoF velocities from previous forces

for c ≥ 1 do // loop over all contacts
for j ∈ Jc do

(1) p j ← p j + γc , j r̄ c ;
end

end
// Run Gauss-Seidel loop

for 1 ≤ k ≤ maxGSIterations do
for c ≥ 1 do // loop over all contacts

// Compute current relative velocity

u ←
∑
j∈Jc bc , jp j + k c ;

// Subtract previously applied force

u∗ ← u − r̄ c ;

// Make u∗ satisfy Coulomb law

if u∗N < 0 then
τ ← ∥u∗

T
∥ ;

α ← −µu∗
N
;

u∗
N
← 0 ;

if τ ≤ α then u∗
T
← 0 ;

else u∗
T
←

(
1 − α

τ
)
u∗

T
;

end
r̄ c ← r̄ c + (u∗ − u) ; // Update force

// Report DoF velocity update

for j ∈ Jc do
p j ← p j + γc , j (u

∗ − u);

end
end

end

ϵ∞ to 0.01mm. As in practice this tolerance is not always be reached

for the infinity-norm, we enforce a maximum number of ADMM

iterations as well (usually 25 in our large-scale examples).

6.2.5 Linear solver. To solve the linear system at each ADMM itera-

tion we follow the approach from Fei et al. [2017]. At the beginning

of the algorithm we build an incomplete Cholesky preconditioner

P(A+W ) by factorizing independently the blocks corresponding to
individual dynamic objects. Then, we use the Conjugate Gradient

method to solve the successive linear systems. Note that if there are

no soft constraints between dynamic objects, the preconditioner is

exact and converges in a single iteration. If that is not the case, we

truncate the convergence of the linear solver by setting its tolerance

to a fraction of the current ADMM residual δ∞.

6.2.6 Diagonal approximation. Many previous works have noted

that the rate of convergence of ADMM severely depends on the
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Fig. 6. An animated sphere colliding with a patch of 400 sticky elastic rods,
leading to the emergence of a clumped configuration.

chosen constraint weights [e.g, Narain et al. 2016; Fang et al. 2019]; it
is thus important that we construct the diagonal approximationW of

Awisely. Intuitively,W should reflect how hard it is to move a given

DoF . In practice, for each 3D DoF j, we extract the corresponding
3 × 3 block from A, Aj j , and compute its minimum eigenvalue ηj . It
would be possible to define directlyw j from ηj , however this may

overestimate the DoF weight, as the full stiffness matrix may have

eigenvalues much smaller than any given diagonal block (consider

for instance two light 3D particles stiffly constrained to keep the

same position). To overcome this effect, we take also into account

the mass or inertia associated to the DoF ,mj . We then define the

weight w j using the expression w j := max

(
σηj ,min

(
βmj ,ηj )

) )
.

We found this heuristic to be rather robust, and used consistently

σ = 0.001 and β = 25 in our examples.

6.2.7 Geometric correction. At each ADMM iteration two primal

quantities are updated, v and p. They should coincide upon conver-

gence of the algorithm, but in practice will differ ever slightly. One

may thus choose either v or p as the final step velocities. Using v
will usually yield a slightly lower elastic energy (as it results from

a minimization of A), while using p ensures that the solution is

feasible, as it is the direct result of a projection onto the contact

manifold. In a sense, the latter amounts to applying a final geometric

correction step. As our examples include thin, two-sided objects, we

value resolving collisions more that solving elasticity at very high

accuracy, so we use p as the final velocities.

6.2.8 Parallelization. Most of the steps in our approach can be

easily parallelized, with the exception of the matrix-free Gauss–

Seidel algorithm 3. To ensure deterministic results — i.e, independent
of the thread scheduling, we must ensure that threads running

concurrently to not operate on the same DoF . As it is usually

impossible to split all contacts into fully independent sets, we also

decompose the contact projection into several sequential stages, and

use a greedy coloring algorithm to assign contacts to the different

threads at each stage. We limit the number of stages to 8 and solve

all remaining contacts sequentially.

6.3 Extensions
We now describe optional modifications to the solver presented in

Section 6.1 that bring new features or improve performance.

6.3.1 Cohesion. Cohesion is typically modeled through the appli-

cation of a constant, negative normal force −ξcnc at each contact

point [Raous et al. 1999; Gascón et al. 2010]. This supplemental force

Fig. 7. A piece of cloth being pinched between two kinematic spheres.
Without compliance (middle) the cloth quickly becomes unstable, while
finite compliance (right) greatly dampens this effect.

can easily be incorporated in our framework, as illustrated in Fig. 6.

We simply need to modify the initialization of the Gauss–Seidel

solver from Algorithm 3; rather than simply adding back the saved

force r̄c from the previous iteration, we apply the cohesion force by

replacing line (1) with

p j ← p j + γc , j (r̄c − sc ξcnc ) .

Note that this is equivalent to shifting the Signorini condition by ξ ,

−ξ ≤ r
N
⊥ u

N
≥ 0.

6.3.2 Compliance. Real-world animations regularly contain con-

tradicting constraints which cannot be all simultaneously resolved,

causing unnatural strains to the simulated objects (Fig. 7). In some

situations a slight violation of the contact constraints may be prefer-

able to such deformations. Fortunately, we can easily mark some

contacts as compliant within our solver. For each contact c that we
want to make compliant, we simply append a virtual 3D slack DoF

p jc to the vector p, and insert a new coefficient bc , jc = 1 into the B
matrix. Then the compliance of the contact can be chosen by tun-

ing thew jc coefficient of the diagonal matrixW – determining the

“inertia” of the virtual DoF . Settingw jc = +∞ amounts to leaving

the contact as non-compliant, but giving it a finite value will shift

part of the contact-induced deformation to the slack DoF , the exact

amount being determined by the ratio γc , jc =
1

scw jc
.

On a more theoretical note, we can remark that adding a finite

compliance to all contacts for which k
N
< 0 is sufficient — but not

necessary — to ensure existence of a solution to the DFCP (this

follows from the existence criterion given by Acary et al. [2011]).

6.3.3 Sleeping heuristics. Most of the time, we observe that the ma-

jority of contacts have converged well before the end of the ADMM

algorithm. This means that keeping solving them at each iteration

of the Gauss-Seidel projection is wasteful. To focus the computa-

tional power onto the regions that are still being actively solved,

we adopt the contact-freezing heuristics from Daviet et al. [2011];

if the update ∥u − u∗∥ is smaller than some threshold, we simply

stop solving the contact for a fixed number of iterations. In practice

we set this threshold to 0.01δ∞, where δ∞ is the current ADMM

residual, and unfreeze the contact at the beginning of Algorithm 3.

6.3.4 Accelerated algorithm. Inspired by Nesterov momentum for

gradient descent, many works have proposed accelerated variants of

the ADMM algorithm. We had success adapting the algorithm from
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Table 1. Performance comparison with the nodal solver from Li et al. [2018]
and a variant of ICA [Otaduy et al. 2009] solving nonlinear Coulomb friction.
Average contact solver time per timestep (ms) for each model problem on a
quad-core Intel® Core™ i5-8259U processor.

Cards

Solver Belt µ = 0.2 µ = 0.6 Dragging Box & Cone

Ours 45 2.4 92 0.4 275

Nodal 28 7.6 144 1.6 292

NL-ICA 189 8.7 495 8.2 490

Goldstein et al. [2014], though the practical performance improve-

ment remains limited. For the sake of completeness, we outline the

necessary modifications in Appendix C, Algorithm 4.

7 RESULTS

7.1 Validation on model cloth problems
In order to validate the accuracy of our method, we leverage the

examples devised by Li et al. [2018] that have been open-sourced

alongside their Argus solver. To this end, we implemented Algo-

rithm 2 as an alternative friction contact solver in their framework,

with the following alterations:

• To be consistent with other solvers in Argus, we do not update

collision detection during the ADMM iterations;

• Linear systems are solved using a diagonal-preconditioned

Conjugate Gradient;

• As the frictional problem interface in Argus provides the

stiffness matrix A but not the mass matrix M , we simply

define the diagonal weighting matrix W asw j = 0.1ηj ;

We then proceed to reproduce examples from Li et al. [2018]:

houses of cards with varying friction coefficients, a stretched con-

veyor belt, a piece of cloth dragged on a plane, and another cloth

draping a box and a cone (Fig. 8; see also the accompanying video).

For all those examples our results are qualitatively similar to that

of Li et al. [2018]. Table 1 and Fig. 9 compare performance of our

method against that of the nodal solver from Li et al. [2018], and

NL-ICA, a modified version of the nested-relaxation (ICA) solver

from Otaduy et al. [2009] that solves the nonlinear friction law

leveraging the local solver from Daviet et al. [2011] and is also im-

plemented in Argus. Generally, the nodal solver performs well when

the contact configuration is simple, but its performance degrades in

situations involving multiple layers, where it is required to duplicate

many vertices — see for instance the house of card example with

low friction, or the later stage of the “Box & Cone” simulation. In

contrast, the performance of our algorithm is much less affected.

Fig. 9 also features the original (faceted) ICA solver from Otaduy

et al. [2009]. While the simulations diverge quickly due to solving

different friction laws, as can be seen from the evolution of the num-

ber of contacts in time, our algorithm still stands out as competitive

across the whole time range.

7.2 Large assemblies
We now switch back to our primary implementation that follows

Section 6 strictly. Except for the ADMM implicit integrator example

(Section 7.4), all following simulations are run using a ProjectedNew-

ton integrator, with the sub-blocks in the incomplete Cholesky pre-

conditioner being factorized leveraging Intel®MKL band-diagonal

routine (for fibers) and Pardiso (for other objects). Physical and

numerical parameters are summarized in Tables 4 and 5.

Hairy balls. Inspired by Kaufman et al. [2014], we evaluate the

scaling of our solver using hairy balls of increasing hair density. We

use a setup roughly matching the one from Kaufman et al. [2014]:

human-hair-like, slightly frizzy fibers are grown on top of one hemi-

sphere of a ball of diameter 18cm. They are discretized as Discrete

Elastic Rods (DER) with 30 elements per rod and a radius of 0.037mm.

The balls are then subjected to the sequence of rotations around

their three axis described in [Kaufman et al. 2014]. We used balls

with 16k , 32k , 64k and 127k rods, and ran simulations at a rate of 24

frames per second, using four timesteps per frame (i.e, ∆t ∼ 10ms).

The friction coefficient is set to 0.2. The highest-density ball con-

tains 4.2M 3D DoF and induced a maximum of 5.7M contact points
2
;

performance numbers are reported in Table 2. While our hardware

and simulation setup does not exactly match that of Kaufman et al.

[2014] — in our implementation the proximity and physical radii

always match and the geometry of our strands may differ slightly –

our method exhibits nicer scalability as the rod count increases. This

follows from our method avoiding the time- and memory-intensive

assembly of the Delassus operator. We were thus able to simulate

a hairy ball with density and curve count comparable to that of a

human head of hair while staying well within the memory budget

of a modern workstation.

To further evaluate the performance impact of the local solver,

we modified our matrix-free contact projection Algorithm 3 to han-

dle non-isotropic local problems by storing full 3 × 3 blocks and

plugging-in the local solver of Daviet et al. [2011] used by Kauf-

man et al. [2014]. Building on this we also implemented NL-ICA by

replacing our ADMM outer loop with the nested relaxation algo-

rithm. Table 3 compares costs to reach the 0.01mm tolerance and to

perform a fixed number of 25 iterations on contact configurations

obtained by initializing the solver with the geometry of 5 represen-

tative frames at various resolutions. Note that we did not succeed

running complete hairy ball simulations with NL-ICA due to the

solver regularly diverging. We explain the higher robustness of our

method as the result of two phenomenons, NL-ICA’s block-Gauss–

Seidel having trouble handling the staggered DER twist DoF and

the proximal penalization term providing stability to our approach.

120 bunnies. While our algorithm is mainly designed to address

the challenges stemming from the simulation of thin objects, we

evaluated its performance on volumetric bodies by reproducing the

“120 bunnies” examples from Verschoor and Jalba [2019], which

features a high DoF -to-contacts ratio. Figure 11 compares the per-

formance of our solver with NL-ICA using a timestep of 1ms; our

approach systematically required less iterations to reach the pre-

scribed tolerance of 0.01mm. The outer surface of each bunny was

discretized using 2498 faces and embedded in a non-conforming

2
Supplemental collisions detected during the ADMM iterations are not accounted for

in the reported contact numbers.
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Fig. 8. Representative images from our reproduction of Li et al. [2018] model problems using our proposed contact solver. From left to right, high-tension belt,
cloth drag, houses of cards with high and low friction, “box and cone”. The resulting animations are consistent with [Li et al. 2018].

Table 2. Performance results for our medium and large scale simulations. Number of contacts and timings are averaged over the whole simulation, with
maximum values given inside parentheses. Simulation times are given for a full 24fps frame, and are defined as follow: tframe is the total elapsed time for the
frame, including dynamics, collision detection, and contact resolution; tsolver is the total time spent inside the contact solver (Algorithm 2 excluding contact
detection); %linear is the percentage of time spent solving linear systems; %proj is the percentage of time spent in the contact projection (Algorithm 3). “# steps”
indicates the number of timesteps per 24fps frame; we used a fixed number of 2 Projected Newton iterations per substep. “Peak GB” indicates the peak
memory consumption of the process, including the host application. Simulations were allocated a subset of cores of two Intel®Xeon®E5-2680v3 processors.

Scene # ∆t (ms) # hairs # DoF # contacts t
frame
(s) t

solver
(s) %

linear
%proj # cores Peak GB

Hairy ball 16k 10.4 15565 498k 212k (337k) 84 (109) 39 (48) 53 15 8 7.7

Hairy ball 32k 10.4 31765 1.0M 555k (902k) 193 (271) 86 (123) 51 17 8 13.3

Hairy ball 64k 10.4 63529 2.0M 1.4M (2.3M) 393 (542) 177 (235) 56 13 16 27.0

Hairy ball 127k 10.4 127058 4.1M 3.9M (5.8M) 618 (835) 298 (339) 61 17 24 51.3

Hair band 5k 6.9 5445 257k 161k (219k) 104 (124) 56 (70) 41 32 10 5.8

Hair band 13k 6.9 13308 638k 569k (684k) 242 (285) 127 (141) 38 34 20 12.9

Hair band 27k 6.9 26615 1.3M 2.0M (2.4M) 614 (718) 331 (373) 38 34 20 26.54

Shirt only 6.9 0 27k 2026 (3228) 62 (74) 38 (45) 87 0.4 8 2.7

Long hair only 6.9 5445 120k 150k (260k) 134 (283) 37 (78) 21 55 8 11.9

Long hair+Shirt 5k 6.9 5445 147k 176k (340k) 294 (442) 116(174) 45 36 8 11.9

Long hair+Shirt 27k 6.9 27225 632k 1.14M (1.49M) 839 (1967) 216 (310) 35 34 18 20

Long hair+Shirt 54k 6.9 54450 1.2M 3.3M (4.4M) 1329 (3163) 451 (721) 31 49 24 35

Furry Bunny 6.9 29k 217k 78k (183k) 350 (550) 211 (364) 60 23 14 8.1

Palm tree 20.8 0 128k 43k (44k) 36.5 (44.9) 13 (18) 96 0 24 6
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Fig. 9. Comparison of contact solver time and number of contacts (bottom)
per timestep (top) for the box-and-cone simulation of Li et al. [2018] using
their nodal solver, the ICA algorithm from Otaduy et al. [2009], and our
approach.

Table 3. Ablation study on contact configurations extracted from 5 “hairy
ball” frames at each resolution. “tol” indicates the tolerance (in mm) reached
and contact projection time after 25 iterations, while “iters“ indicates the
number of iterations and contact projection time required to reach the
prescribed 0.01mm tolerance. “No Sleep” disable contact sleeping heuristics
and “Anisotropic” does not assume isotropy of local problems. Run on a
6-core Intel®Xeon®E5-1650v4.

16k 32k 64k

tol iters tol iters tol iters

Ours 0.04 31 0.02 31 0.01 29

0.5s 0.6s 1.3s 1.7s 3.1s 3.8s

No Sleep 0.04 30 0.03 37 0.02 28

1.2s 1.5s 3.1s 4.8s 7.7s 9.0s

Anisotropic 0.03 30 0.02 31 0.01 29

2.8s 3.3s 7.4s 9.3s 17.4s 20.4s

NL-ICA 0.09 286 0.15 798 0.17 1578

4s 27s 11.7s 163s 27.7s 715s
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Fig. 10. A hairy ball comprising 127, 058 elastic rods going through the
successive rotations described in [Kaufman et al. 2014].

0 100 200

25

75

125

175

225 Ours

NL-ICA

Fig. 11. Our reproduction of the “Bunnies” example from Verschoor and
Jalba [2019]. Right: Per-frame average of the number of iterations required
to reach the prescribed 0.01mm tolerance for our method and NL-ICA.

tet-mesh containing 2132 elements. Our simulation ran at an aver-

age of 5.5 per timestep on an Intel®Xeon®E5-1650v4 3.6GHz (16.9

seconds per timestep single-threaded) while always reaching the

prescribed tolerance, 24% of this time being spent for the contact

solver.

7.3 Coupled simulations
While the previous sections have shown that the performance of

our method is already competitive with more specialized solvers,

the main motivation behind our approach was the ability to couple

together dynamical objects of different topologies; we now proceed

to run such tests on medium-to-large scale scenes. For artistic con-

venience the friction coefficients are set per-object and the effective

coefficient is computed using geometric mean.

Furry bunny. Our first test consists in equipping a soft elastic

bunny with a porcupine groom comprising 29k short elastic rods,

letting it fall on an inclined plane and roll through a piece of hang-

ing cloth (Fig. 12). The bunny is embedded in a non-conforming

Fig. 12. An elastic bunny with 29k fur strands is impacting an inclined plane
before crashing through a hanging piece of cloth, stress-testing the coupling
capabilities of our contact solver.

regular tet-mesh containing 4.8k vertices and subject to fixed co-

rotated elasticity [Stomakhin et al. 2012], while the cloth is using

the Discrete Shell model [Grinspun et al. 2003] and is meshed with

1.7k vertices. The friction coefficients are set to 1.0 for the ground

plane, 0.5 for the dynamical objects, and 0 for the cylinder. The

high-velocity impact of the bunny on the ground, the spikiness of

the strands colliding frontally with the thin layers of cloth (2mm

thick), and the stiff coupling between the rods and the elastic bunny

all contribute to make this scene highly challenging for frictional

contact solvers.

Hair band. Out next test illustrates a typical scenario whichwould
be challenging to make look right leveraging solely one-way cou-

pled setups, but that can be simulated seamlessly with our method:

the tightly coupled dynamics of a stretched elastic hair band hold-

ing a medium-length curly groom in place (Fig. 13). Note that the

band is maintained in place solely by contact and friction with the

underlying hairs and head; no additional constraints are used. The

friction coefficients are set to 0.2 for the hair, and 0.5 for the elastic

band and character body.

Our solver manages to robustly handle this complex contact con-

figuration, even as the character goes through a running motion.

Timings for varying densities of hair curves are reported in Table 2.

Long hair on shirt. Here we equip our character with a shirt and a

long hairstyle, and make them go through the running motion once

again. The friction coefficients are set once again to 0.2 for the hair,

and 0.5 for the shirt and character body. To reduce wake drag from

the fast motion, a narrow-band of air is also simulated around the

hair [Stomakhin et al. 2020]. This running sequence is inducing a

swingingmotion of the hair, which repeatedly impacts the simulated

shirt. Again, simulating the scene with staggered one-way coupled
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Fig. 13. A stretched elastic band is maintaining the 27k strands of the character’s hairstyle in place, thanks to frictional contacts. © Weta Digital.

Fig. 14. Leaves of a palm tree colliding under a gentle breeze. ©Weta Digital.

solves would not be straightforward; the full mass of hair is heavier

than the shirt, but individual strands are much lighter.

We also ran this scene with varying numbers of hair strands,

and in order to estimate the cost of coupling, with either just the

hair or just the shirt. From the statistics reported on Table 2, we

notice that this scene is harder on the solver; for a similar problem

size, the solve times are significantly higher than for the hairy

balls, and proportionally a larger amount of time is spent inside

the contact projection step. Indeed, the long, straight hairstyle is

prone to create packed strand assemblies, and as a result a very high

number of contacts. The simulation thus suffers from a scarcity of

DoF as can be evaluated using the criterion from Bertails-Descoubes

et al. [2011] based on the ratio
µn
m . Intuitively, this means a denser

Delassus operator. We also notice that running the simulation with

both hair and shirt is slightly more expensive than running the

two elements separately; this likely follows from the supplemental

contacts induced by collisions between hair and shirt.

7.4 Extensions
Cohesion. The simulation depicted in Fig. 6 involves a patch of 401

30cm-long hairs being clumped tightly under the effect of cohesion,

and sticking to an animated ball collider. In this example we used a

simple cohesion model (linear fall-off of the attractive force between

neighbouring primitives), but more involved ones [Fei et al. 2017,

2019] could be used as well.

Frame-based models. We demonstrate that our algorithm can also

be applied to frame-based models [Martin et al. 2010; Faure et al.

2011] by discretizing a palm tree using a one-dimensional wireframe

for the trunk and two-dimensional surfaces for the leaves, both using

Linear Blend Skinning shape functions and co-rotated elasticity. The

Fig. 15. Efficiently relaxing a wavy hairstyle comprising over 5M vertices
with frictional contacts using the ADMM implicit integrator. ©Weta Digital.

motion of this tree under a fresh breeze that induces many leaf-leaf

and leaf-branch collisions is depicted in Fig. 14.

ADMM implicit time integrator. Last, we show how the ADMM

implicit integrator can be combined with our contact solver to pro-

vide an efficient way of relaxing a wavy hairstyle under gravity

(Fig. 15). Our naive grooming attempt consists in starting from a

porcupine initial geometry, first applying a backwards acceleration,

then switching back to normal gravity. The 53507 strands with 100

vertices each are simulated as Discrete Elastic Rods with quasistatic

twist relaxation, leading to cheap, decoupled tridiagonal linear sys-

tems having to be solved at each global step of the algorithm. Due

to the slow relative velocities, collision detection is performed using

proximity queries only. This approach is very memory-efficient,

with our simulation only requiring 15GB despite containing 5.4M
DoF and over 11.9M contacts in the later stages. The total runtime

on a 6-core Intel®Xeon®E5-1650v4 was 9.6 hours for 200 frames,

averaging to 174s per frame.

8 DISCUSSION

8.1 Limitations and future work
Assumption on discretization. By design and through Assump-

tion 1, we limited our approach to specific kinds of DoF . While our

results show that we are still able to simulate a large class of objects,

our method is not applicable to rigid bodies, for instance; the closest

approximation in our framework would be to use a 12-DoF elas-

ton equipped with a stiff elastic material. Actually, extending our

method to handle arbitrary DoF would be relatively straightforward;

the use of ADMM to decompose the incremental problem into an

elastic relaxation part and a simpler contact projection would still

be valid, and we could use more general-purpose approaches [e.g,
Daviet et al. 2011; Erleben 2017] to solve the DCFP with diagonal
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Table 4. Summary of physical parameters used in our simulations, abbre-
viated as follow: D : thickness/diameter (in mm); ρ : volumetric mass in
g.cm−3; Eb and Es : bending and stretching moduli (in MPa); ν : Poisson
ratio; µ : friction coefficient; ξ : elastic damping (in ms). We use the Discrete
Elastic Rods and Discrete Shells models for 1D and 2D objects, and either
co-rotated or fixed co-rotated elasticity models for volumetric bodies.

Object D ρ Eb Es ν µ ξ

Hairy ball 0.07 1.3 4000 100 0.48 0.2 1

Long hair 0.08 1.3 4000 100 0.48 0.2 1

Shirt 2 1 0.001 1 0.4 0.5 5

Curly hair 0.08 1.3 4000 100 0.48 0.2 1

Hair band 5 0.4 0.001 1 0.4 0.5 5

Bunny, fur 0.05 1.3 400 100 0.48 0.2 1

Bunny, cloth 2 1 0.05 1 0.4 0.5 5

Bunny, body - 1 0.025 0.2 1 0

Palm Tree - 0.2 0.25 0.3 0.5 10

120 Bunnies - 1 5 0.4 0.5 0

Table 5. Summary of non-physical parameters used in our simulations,
abbreviated as follow: NPN: fixed number of Projected Newton iterations;
NADMM: maximum number of ADMM iterations; NGS: fixed number of
Gauss–Seidel iterations; ϵ∞: infinity-norm ADMM tolerance in mm; τLS:
linear solver tolerance as ratio of δ∞ when the preconditioner is inexact; β ,
σ : parameters for building our diagonal approximation.

Newton NPN NADMM NGS ϵ∞ τLS β σ

Hairy ball 2 25 5 0.01 - 25 0.001

Hair & Shirt 2 25 10 0.01 - 25 0.001

Hair & Band 2 25 10 0.01 - 25 0.001

Furry Bunny 2 50 25 0.01 10
−4

25 0.001

Palm Tree 2 25 5 0.01 - 25 0.001

120 Bunnies 1 250 10 0.01 - 25 0.001

stiffness matrix. However, that would imply a significantly higher

per-iteration cost and implementation complexity, which is antago-

nistic to our initial goals.

Alternative friction laws. Our solver is designed to be very efficient

at solving the isotropic Signorini–Coulomb conditions; it is unclear

whether it could be easily adapted to solve similar contact laws,

such as anisotropic Coulomb friction [Erleben et al. 2019]. In the

future we would like to explore a broader variety of contact laws,

and examine whether we could derive appropriate local solvers.

Choice of diagonal approximation. As noted by several works

from the literature [e.g, Narain et al. 2016; Fang et al. 2019], the

choice of weights for the constraint in the Augmented Lagrangian

formulation has a severe impact on the convergence behaviour

and resulting performance of the method. The heuristic that we

propose in Section 6.2.6, based on the DoF inertia and the minimum

eigenvalue of associated diagonal block is not particularly elegant

and can seem rather arbitrary at first; Fig. 16 shows that the choice

of β , the relative inertia weight, does affect the convergence, though
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10
−2

10
−1

10
0

10
1

ADMM iteration

δ ∞
(
m
m
)

β = 10

β = 25

β = 100

Fig. 16. Number of iterations required to reach our prescribed tolerance
δ∞ = 0.01mm for various choices of ADMM constraint weight, on a prob-
lem extracted from a timestep of Fig. 2. Dashed lines correspond to the
accelerated variant of the algorithm (Appendix C).
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Fig. 17. Infinity-norm error (top) and ratio of final to initial squared residual
ℓ2 norm averaged over each frame of our two largest simulations.

using the accelerated variant reduces this effect. However, in practice

we found using β = 25 to be rather robust, and did not have to tune

this parameter for any of the examples presented above, despite the

variety in size, shape and topology of our dynamical objects. Still,

deriving the choice of constraints weights from a more grounded

analysis would be an interesting future line of research.

Non-physical parameters. One of our initial goals was to limit the

number of non-physical parameters that would need to be tuned

by an artist to produce a simulation as much as possible; we list the

values chosen for our examples in Table 5. Aside from the constraint

weight discussed above, our method requires defining a maximum

number of iterations for the Gauss–Seidel and ADMM loops, and

optionally a tolerance for the iterative linear solver. As shown in

Fig. 17, for our largest simulations the prescribed infinity-norm

tolerance is infrequently reached, and the solver terminates due to

reaching the maximum number of ADMM iterations. In practice we

rarely adjusted this number, doubling it solely for the “Furry Bunny”

example. We also note that when not reaching the infinity-norm

tolerance still manages to significantly lower the error residual, as

is exhibited by the decrease in ℓ2 norm; deriving a more perceptual

exit criterion, less sensitive to problematic contact configurations,

would help reduce the effect of the maximum number of iterations.

Performance. ADMM being a first-order method, our algorithm

needs to run for many iterations before yielding satisfying results.

Despite being competitive with existing approaches, the runtime

of our method on full-resolution scenes can thus still verge on the

side of intractability. However, the ability of our scheme to two-way
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couple various dynamical elements should help reduce the number

of iterations required to simulate a complex animation sequence. We

would also like to explore adapting our algorithm to massively par-

allel architectures. The main difficulty of such an endeavour would

be the Gauss–Seidel contact projection, and it would be interesting

to assess whether ideas from the literature [e.g, Tonge et al. 2012;
Fratarcangeli and Pellacini 2015] could be applicable.

8.2 Conclusion
Leveraging a loose assumption on the degrees of freedom of dynam-

ical objects, we presented a novel approach for solving nonlinear

dynamics of elastic bodies with frictional contact and exact Coulomb

friction. While simple to implement, our approach derives from a

sound theoretical basis; it was shown to scale to millions of con-

tacts and degrees of freedom and allows seamless coupling of fiber

assemblies, shells, and volumetric bodies, unlocking the simulation

of virtual characters and their environment with an unprecedented

amount of details.
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A CONVEX OPTIMALITY CONDITIONS
The normal cone to a convex set C ⊂ Rn at x is defined as the

closed convex cone NC (x) := {z ∈ Rn, (z − x).y <= 0 ∀y ∈ C}.
The following equivalence [Hiriart-Urruty and Lemaréchal 1993,

Theorem VII.1.1.1] provides a convenient way of expressing the

optimality conditions of a convex optimization problem:

Theorem A.1. Let f : Rn 7→ R be differentiable and convex, then

x̃ = min

x ∈C
f (x) ⇐⇒ ∇f (x̃) ∈ −NC (x̃).

We also note the following expressions of remarkable normal

cones (see e.g, [Daviet 2016, Corollary A.3 and Theorem A.4]);

Property 1 (Normal cone to the precomposition by an affine

map). Let B : Rm 7→ Rn , v → Bv + k be an affine map, and let
V := {v,B(v) ∈ C}. Then there always holds the inclusion

BTNC (B(v)) ⊂ NV (v),

and the equality is achieved under the sufficient condition that the
interior of V is non-empty.

Property 2 (Normal cone to the second-order cone Kµ ).

y ∈ −NKµ (x) ⇐⇒ x ∋ Kµ ⊥ y ∈ K 1

µ
⇐⇒ x ∈ −NK 1

µ
(y);

Our result follows from combining Properties 2 and 1:

Theorem A.2. Let f : Rm 7→ R be a differentiable convex func-
tion, B : Rm 7→ Rn , v → Bv + k an affine map, and C :={
v ∈ Rm,B(v) ∈ K 1

µ

}
. Then the existence of r ∈ Rm such that{

∇f (v) = BT r

K 1

µ
∋ B(v) ⊥ r ∈ Kµ

implies that v realizes the minimum of f over C , and the reverse
implication is granted if the interior of C is non-empty.

B ISOTROPIC LOCAL SOLVER
Let study each case of our proposed local solver and show that all

satisfy the Signorini–Coulomb conditions (1–2).

(i) In the separating case, we set u = u∗ and r = u − u∗ = 0.
Since u

N
≥ 0 and r

N
= 0, the Signorini condition is satisfied,

and r
T
= 0 always satisfy the Coulomb condition.

(ii) In the sticking case, we set u = 0 and thus r = −u∗ ∈ Kµ .

Both conditions are again satisfied.

(iii) In the last case, we know that u∗
N
< 0 and ∥u∗

T
∥ , 0. We set

u
N
= 0, thus r

N
= u

N
− u∗

N
≥ 0, and the Signorini condition

is satisfied. Moreover r
T
= µ u∗N

∥u∗
T ∥
u∗

T
= −µr

N

u∗
T

∥u∗
T ∥
, which

also satisfies the Coulomb condition.

C ACCELERATED ADMM ALGORITHM
Algorithm 4 outlines how to modify Algorithm 2 to implement

Nesterov acceleration as suggested by Goldstein et al. [2014].

ALGORITHM 4: Accelerated ADMM iterations

θ 0 ← 1; p̂← p0
;

ˆλ← λ0
;

for l ≥ 1 do // Do ADMM iterations
// Update DoF velocities

Solve (A +W )vl = f +W
(
p̂ + ˆλ

)
;

// . . .

// Update feasible projection

pl ← vl − ˆλ ;

Project pl onto feasible set using Algorithm 3 ;

// . . .

λl ← ˆλ + (p − vl ) ; // Update dual forces

if residual is increasing then
θ l = 1; p̂← pl ; ˆλ← λl ; // Reset acceleration

else
// Add momentum

θ l ← 1

2

(
1 +

√
1 + 4

(
θ l−1

)
2

)
;

p̂← pl + θ l−1−1

θ l

(
pl − pl−1

)
;

ˆλ← λl + θ l−1−1

θ l

(
λl − λl−1

)
;

end
end
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