So-Bogus
A c++ sparse block matrix library aimed at Second Order cone problems
 All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Pages
SecondOrder.fwd.hpp
1 /*
2  * This file is part of So-bogus, a C++ sparse block matrix library and
3  * Second Order Cone solver.
4  *
5  * Copyright 2013 Gilles Daviet <gdaviet@gmail.com>
6  *
7  * So-bogus is free software: you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation, either version 2 of the License, or
10  * (at your option) any later version.
11 
12  * So-bogus is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16 
17  * You should have received a copy of the GNU General Public License
18  * along with So-bogus. If not, see <http://www.gnu.org/licenses/>.
19 */
20 
21 
22 #ifndef BOGUS_SECOND_ORDER_FWD_HPP
23 #define BOGUS_SECOND_ORDER_FWD_HPP
24 
25 #include "../Core/Block.fwd.hpp"
26 
27 namespace bogus
28 {
29 
31 namespace local_soc_solver
32 {
34 
37 {
39 #ifndef BOGUS_WITHOUT_EIGEN
43 #endif
44 } ;
45 }
46 
47 template< DenseIndexType Dimension, typename Scalar >
48 struct LocalProblemTraits ;
49 
50 template < DenseIndexType Dimension, typename Scalar, bool DeSaxceCOV,
51 #ifndef BOGUS_WITHOUT_EIGEN
53 #else
55 #endif
56 class SOCLaw ;
57 
58 }
59 
60 #endif
Enumerative algorithm, then Newton to refine the solution.
Definition: SecondOrder.fwd.hpp:42
Newton algorithm on the SOC FischerBurmeister function.
Definition: SecondOrder.fwd.hpp:38
Enumerative algorithm, such as describer in Appendix B of .
Definition: SecondOrder.fwd.hpp:40
Non-smooth laws based on Second Order Cone complementarity. To be used within as the first argument t...
Definition: SecondOrder.fwd.hpp:56
Strategy
Strategy to be used by the local SOC solver.
Definition: SecondOrder.fwd.hpp:36
Newton algorithm, then Enumerative as failsafe.
Definition: SecondOrder.fwd.hpp:41