So-Bogus
A c++ sparse block matrix library aimed at Second Order cone problems
|
Base class for dense and sparse block matrices, thought dense don't exist yet. More...
#include <BlockMatrixBase.hpp>
Public Types | |
enum | CompileTimeProperties { RowsPerBlock = Traits::RowsPerBlock, ColsPerBlock = Traits::ColsPerBlock, has_row_major_blocks = BlockTraits< BlockType >::is_row_major, has_square_or_dynamic_blocks = ColsPerBlock == RowsPerBlock, has_fixed_rows_blocks = ((int) RowsPerBlock != internal::DYNAMIC ), has_fixed_cols_blocks = ((int) ColsPerBlock != internal::DYNAMIC ), has_fixed_size_blocks = has_fixed_cols_blocks && has_fixed_rows_blocks } |
Compile-time block properties. | |
typedef BlockMatrixTraits < Derived > | Traits |
typedef Traits::Index | Index |
typedef Traits::Scalar | Scalar |
typedef Traits::BlockType | BlockType |
typedef Traits::BlockPtr | BlockPtr |
typedef Traits::BlocksArrayType | BlocksArrayType |
typedef IterableBlockObject < Derived > | Base |
enum | { is_transposed = Traits::is_transposed } |
enum | { RowsAtCompileTime = internal::DYNAMIC, ColsAtCompileTime = internal::DYNAMIC, is_self_transpose = Traits::is_symmetric } |
typedef Traits::ConstTransposeReturnType | ConstTransposeReturnType |
typedef Traits::TransposeObjectType | TransposeObjectType |
typedef Traits::PlainObjectType | PlainObjectType |
Public Member Functions | |
template<typename RhsT , typename ResT > | |
void | splitRowMultiply (const Index row, const RhsT &rhs, ResT &res) const |
Multiplies a given block-row of the matrix with rhs , omitting the diagonal block. More... | |
BlockPtr | blockPtr (Index row, Index col) const |
Return a BlockPtr to the block a (row, col) or InvalidBlockPtr if it does not exist. | |
BlockPtr | diagonalBlockPtr (Index row) const |
Return a BlockPtr to the block a (row, row) or InvalidBlockPtr if it does not exist. | |
const BlockType & | block (BlockPtr ptr) const |
Returns a reference to a block using the result from blockPtr() or diagonalBlockPtr() | |
BlockType & | block (BlockPtr ptr) |
Returns a reference to a block using the result from blockPtr() or diagonalBlockPtr() | |
Index | rows () const |
Returns the total number of rows of the matrix ( expanding blocks ) | |
Index | cols () const |
Returns the total number of columns of the matrix ( expanding blocks ) | |
Index | size () const |
Returns the total number of blocks of the matrix. | |
const Traits::BlocksArrayType & | blocks () const |
Access to blocks data. | |
const BlockType * | data () const |
Access to blocks data as a raw pointer. | |
BlockType * | data () |
Access to blocks data as a raw pointer. | |
BlockType & | diagonal (const Index row) |
const BlockType & | diagonal (const Index row) const |
BlockType & | block (Index row, Index col) |
const BlockType & | block (Index row, Index col) const |
template<typename Func > | |
void | eachBlockOfRow (const Index row, Func func) const |
Iterates over each block of a given row. Calls func( col, block ) | |
template<typename Func > | |
void | eachBlockOfCol (const Index col, Func func) const |
Iterates over each block of a given col. Calls func( row, block ) | |
template<bool DoTranspose, typename RhsT , typename ResT > | |
void | rowMultiply (const Index row, const RhsT &rhs, ResT &res) const |
Multiplication with a single row. | |
template<bool DoTranspose, typename RhsT , typename ResT , typename PreOp > | |
void | rowMultiplyPrecompose (const Index row, const RhsT &rhs, ResT &res, const PreOp &op) const |
template<bool DoTranspose, typename RhsT , typename ResT > | |
void | colMultiply (const Index col, const RhsT &rhs, ResT &res) const |
Multiplication with a single column. | |
template<bool DoTranspose, typename RhsT , typename ResT , typename PostOp > | |
void | colMultiplyPostcompose (const Index col, const RhsT &rhs, ResT &res, const PostOp &op) const |
const Derived & | derived () const |
Returns a const reference to the implementation. | |
Derived & | derived () |
Returns a reference to the implementation. | |
Index | blockRows (Index row) const |
Returns the number of rows of a given block row. | |
Index | blockCols (Index col) const |
Returns the number of columns of a given block columns. | |
Index | rowsOfBlocks () const |
Returns the number of block rows of the matrix. | |
Index | colsOfBlocks () const |
Returns the number of block columns of the matrix. | |
const Index * | rowOffsets () const |
Returns an array containing the first index of each row. | |
const Index * | colOffsets () const |
Returns an array containing the first index of each column. | |
Index | rowOffset (Index row) const |
Returns an array containing the first index of a given row. | |
Index | colOffset (Index col) const |
Returns an array containing the first index of a given columns. | |
ConstTransposeReturnType | transpose () const |
Return a const transposed view of this object. | |
template<bool DoTranspose, typename RhsT , typename ResT > | |
void | multiply (const RhsT &rhs, ResT &res, Scalar alpha=1, Scalar beta=0) const |
Performs a matrix vector multiplication. More... | |
Static Public Attributes | |
static const BlockPtr | InvalidBlockPtr |
Return value of blockPtr( Index, Index ) for non-existing block. | |
Protected Attributes | |
Index | m_rows |
Index | m_cols |
BlocksArrayType | m_blocks |
Base class for dense and sparse block matrices, thought dense don't exist yet.
BlockType& bogus::BlockMatrixBase< Derived >::block | ( | Index | row, |
Index | col | ||
) |
const BlockType& bogus::BlockMatrixBase< Derived >::block | ( | Index | row, |
Index | col | ||
) | const |
BlockType& bogus::BlockMatrixBase< Derived >::diagonal | ( | const Index | row | ) |
const BlockType& bogus::BlockMatrixBase< Derived >::diagonal | ( | const Index | row | ) | const |
|
inherited |
Performs a matrix vector multiplication.
DoTranspose | If true, performs res = alpha * M' * rhs + beta * res, otherwise res = alpha * M * rhs + beta * res |
void bogus::BlockMatrixBase< Derived >::splitRowMultiply | ( | const Index | row, |
const RhsT & | rhs, | ||
ResT & | res | ||
) | const |
Multiplies a given block-row of the matrix with rhs
, omitting the diagonal block.
I.e. res = [ M( row, 0 ) ... M( row, row-1 ) 0 M( row, row+1 ) ... M( row, colsOfBlocks()-1 ) ] * rhs
Especially useful inside a Gauss-Seidel algorithm.